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Fractional Super-Multi-Virasoro Algebra
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An n-dimensional fractional supersymmetry theory is algebraically constructed
on the n-dimensional multicomplex space MCn. By emphasizing its appearance
as a special case of generalized Clifford algebra (GCA), we formulate the fractional
superspace FMCn through a generalized Grassmann algebra (GGA) and construct
the generators and the covariant derivative of FSUSY on FMCn. The generators
of FSUSY are extended to get n copies of the fractional centerless super-
Virasoro algebra.

INTRODUCTION

Among the possible algebras, those induced by bilinear relations have
a special status, probably due to the bilinear aspect of fundamental objects
such as quadratic metrics, commutators, anticommutators, etc. Algebras going
beyond the quadratic ones were constructed in the 1970s from underlying
polynomials of degree higher than two. They are dubbed Clifford algebras
of polynomials and n-exterior algebras [1, 2] by mathematicians. The matricial
representation of such algebras [3] leads to a natural algebraic extension of
the Clifford and Grassmann algebra [4, 5]. The two resulting basic structures,
generalized Clifford and Grassmann algebras (GCA and GGA), endow a
differential structure on noncommutative variables which allow one to build
a theory beyond supersymmetry [10].

These families endow also, from a mathematical point of view, natural
extensions of quadratic theories (complex numbers, quaternions, etc.). Multi-
complex numbers MCn [6, 7] were introduced in analogy to complex numbers
with respect to the usual Clifford algebra.

Multicomplex algebra MCn is an n-dimensional R-algebra and has a
much richer structure than the field of ordinary complex algebra. It has been
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used to extend powerful tools of two-dimensional (super)-conformal field
theories to higher dimension [8, 9] on MCn under the assumption n 5 2 p.

Because of the Zn-graded structure of generalized Clifford (Grassmann)
algebra, and due to the fact that the generators are in a representation of the
tress group, they play a considerable role in the study of deformations of
certain algebras, quantum groups, and the extension of supersymmetric theo-
ries known as fractional supersymmetry theory (FSUSY). FSUSY has been
considered in one dimension [10–12], where this symmetry can be seen as
an Fth root of the time translation ­t; or in two dimensions as an Fth root
of conformal transformations [13]. F 5 2 corresponds to the usual supersym-
metry. The case of 1D fractional supersymmetry leads to a new equation
acting on the states which are in the representation of the braid group [12];
the method adopted there is similar to the one leading to the Dirac equation in
one dimension using supersymmetry [14]. The 2D fractional supersymmetry
theory has been algebraically constructed and the Lagrangian derived using
an adapted superspace [13] via a heterotic extension of the complex plane
by the help of generalized Grassmann variables and its differential structure.
Three-dimensional generalizations of fractional supersymmetry generate sym-
metries which connect fractional spin states or anyons [14].

A very interesting interpretation of FSUSY was given in one dimension
as an appropriate limit of the braided line [17]; 2D FSUSY was used to
describe new 2D integrable models, and 3D FSUSY led to generalizations
of the well-known Wess–Zumino model [18]. If particular dimensions can
reveal interesting behavior, it should be worthwhile to study n-dimensional
(n $ 4) FSUSY extensions to understand the consequences of such extensions
in relation to n-dimensional physics.

The aim of the present paper is to show that the multicomplex space
MCn , which is in fact a GCA generated by a canonical generator e, fulfilling
the basic relation [6]

en 5 21, n P N*

provides the possibility to extend almost of the results of Fleury et al. [13]
and those on the supermulticomplex space SMCn [8] via a realization of the
fractional supersymmetry FSUSY on the fractional superspace of MCn

denoted FMCn. Using generalized Grassmann variables, we will formulate
FMCn and construct the generators and the covariant derivatives of FSUSY
on FMCn; they are extended and lead to n copies of fractional centerless
super-Virasoro (FSV) algebra in ref. [19]; the main reason for this difference
is that ours closes through local (but nonquadratic) relations, whereas FSV
closes with nonlocal (but quadratic) ones.
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1. PRELIMINARIES

A property not often emphasized of the set of complex numbers is its
appearance as a special case of Clifford algebra. All these algebras have in
common their definition from quadratic or bilinear relations and consequently
admit a Z2-graded structure. However, mathematicians have obtained, in the
spirit of usual Clifford algebras, new algebras defined from n-linear relations
and leading to an underlying Zn-graded structure. The so-called polynomial
Clifford algebras can be defined, à la Dirac, through linearization of a homoge-
neous polynomial P,

P(x) 5 o
k

ij50
xi1 ??? xin gi1...in (1.1)

of degree n and k variables, it is generated by g1, . . . , gk [1], which satisfy

P(x1, . . . , xn) 5 (x1 g1 1 ??? 1 xk gk)n (1.2)

{gi1, gi2, . . . , gin} 5 gi1...in (1.3)

where the bracket is defined as

{gi1, gi2, . . . , gin} 5
1
n! o

perms
gis(1) gis(2) ??? gis(n) (1.4)

From this linearization the so-called generalized Clifford algebra (GCA)
emerges quite naturally [3–5].

The GCA denoted Cr
n is generated by a set of r canonical generators e1,

. . . , er satisfying

eiej 5 vSg( j2i) ej ei , ei
n 5 21, i, j 5 1, . . . , r (1.5)

where v 5 exp(2ip/n) is an nth primitive root of unity and Sg(?) is the usual
sign function; the GCA and its associated generalized Grassmann algebra [3,
5] (with ei

n 5 0) have a wide range of applications in physics [15]. Cr
n is

defined as a C-algebra, but, when r 5 1, C1
n can be defined as an R-algebra.

Looking at Eq. (1.5), we see that the case of one generator can be put on
the same footing as the complex numbers with respect to the Clifford algebra.
This algebra was dubbed multicomplex numbers, and efforts in its develop-
ment [6] are motivated by quantum mechanics. These ideas are based on
homogeneous forms of degree higher than two [20].

The set of multicomplex numbers is generated by one element e [6]
such that

MCn 5 Hz 5 o
n21

i50
xi ei, en 5 21/n P N*, xi P RJ (1.6)

it was shown that most of the theorems of complex analysis can be extended



1612 Ouarab

to the MCn , n $ 2, spaces [7]. Among the MCn spaces, the one for which
n 5 2 p has a special status [7]; in that case, one defines the pth conjugate
of a multicomplex number z as follows:

z
(p)

5 o
n21

i50
xiei(2p11), p 5 0, 1, 2, . . . , n 2 1 (1.7)

This conjugation satisfies

z
(p1n)

5 z
(p)

, z
(p)

1 z
(p)

2 5 z1z2
_
(p)

It was established that the set of MCn-numbers can be equipped with the
pseudo norm

,z,n 5 &
n21

p50
z

(p)
(1.8)

by means of the product of n elements of MCn. The notion of the pth conjugate
allows us to see any element z of MCn as parametrized by the n multicomplex
numbers z

(p)
. This is equivalent to saying that Eq. (1.7) can be inverted. As

an easy example, for n 5 2, a complex number z 5 x0 1 x1i parametrized
by x0 and x1 can also be parametrized by the two conjugates z

(0)
5 z and

z
(1)

5 z.
It is then convenient to introduce the differential operators

­
(p)

5
1
n o

n21

i50
v2ipe2i ­

­xi
(1.9)

satisfying ­
(p)

z
(k)

5 dkp.
Moreover, it is worth stressing that most of the results of usual complex

number analysis remain true for MCn numbers, whether for algebraic [6] or
analytic properties [7].

A main property useful for the sequal is that a mapping F: MCn → MCn

is differentiable at z iff

­
(p)

F
(k)

5 0 ∀p Þ k (1.10)

A function satisfying Eq. (1.10) will be called holomorphic. We recall some
of the properties of the MCn numbers and refer to refs. 6 and 7 for more details.

2. n-DIMENSIONAL FSUSY ON THE FRACTIONAL
SUPERSPACE FMCn

By analogy with the building of the fractional superspace of C and as
for heterotic strings [16], where z and z are extended differently [z → (z, u)
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and z remains unaffected], to define the fractional superspace of MCn , to
z

(0)
, z

(1)
, . . . , z

(n21)
, we associate n real generalized Grassmann variables

u
(0)

, u
(1)

, . . . , u
(n21)

. In other words, a point z in MCn is completely determined
by its npth conjugate z

(p)
as seen before; thus FMCn is the set of points

parametrized by the multicomplex numbers z
(p)

and the real generalized

Grassmann variables u
(p)

, p 5 0, 1, 2, . . . , n 2 1; the construction acts
separately on the 1-sectors.

We need first to recall briefly the underlying algebra which allows us
to define FSUSY on MCn. Generalized Grassmann variables are denoted

u
(p)

, p 5 0, 1, 2, . . . , n 2 1, and the associated derivatives ­(p) and d(p) satisfy
the basic algebraic relations

­(p) u
(p)

2 q u
(p)

­(p) 5 1, p 5 0, 1, 2, . . . , n 2 1

d(p) u
(p)

2 q21 u
(p)

d(p) 5 1, p 5 0, 1, 2, . . . , n 2 1 (2.1)

u
(p)F

5 0; ­(p)F 5 d(p)F 5 0, p 5 0, 1, 2, . . . , n 2 1

­(p)d(p) 5 q21d(p)­(p), p 5 0, 1, 2, . . . , n 2 1

where q is a primitive Fth root of the unity; it can be chosen as q 5 exp(2ip/
F). A consequence of relations (2.1) is a Leibnitz rule leading to

­(p)( u
(p)

a) 5 {a} u
(p)

a21 (2.2)

where {a} 5 (1 2 qa)/(1 2 q) (with the derivative d(p) we would have
obtained the same result with the substitution q → q21).

The relations which mix the p-sectors are

u
(p)

u
(k)

5 qu
(k)

u
(p)

­(p)­(k) 5 q­(k)­(p)

­(p) u
(k)

5 q21 u
(k)

­(p)

­(k) u
(p)

5 q u
(p)

­(k) (2.3a)

d(p)d(k) 5 qd(k)d(p)

d(p) u
(k)

5 q21 u
(k)

d(p)
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d(k) u
(p)

5 q u
(p)

d(k) (2.3b)

where p , k; p, k 5 0, 1, 2, . . . , n 2 1.
The algebra defined in Eqs. (2.1) and (2.3) is stable neither under

complex conjugation nor under the permutation of u indices (we denote this
permutation by s). However, it is stable under the composition of both

(AB)*+s 5 A*+s B*+s

which defines an automorphism of the algebra exchanging ( z
(k)

, u
(k)

) and

( z
(p)

, u
(p)

), p, k 5 0, 1, 2, . . . , n 2 1. With such an automorphism, ( z
(p)

, u
(p)

, ­(p),

d(p)) is mapped onto ( z
(k)

, u
(k)

, ­(k), d(k)) and vice versa, so we see that we have
a connection between the p-sectors, p 5 0, 1, 2, . . . , n 2 1. In fact, * + s
has the same significance as the one related to FSUSY on C.

We can remark that

d(p) 5 (­(p))*, (­(p) u
(p)

)* 5 u
(p)

d(p)

So, we refer to the fractional superspace FMCn by

( z
(p)

, u
(p)

, ­(p), d(p))

3. THE FRACTIONAL SUPER-MULTIVIRASORO ALGEBRA

From the above algebra, we can build the generators and the covariant

derivatives of FSUSY on FMCn associated to the z
(p)

-modes, p 5 0, 1, 2,
. . . , n 2 1:

Q
(p)

5 d(p) 1
(1 2 q21)F21

F
u
(p)

F21 ­
(p)

, p 5 0, 1, 2, . . . , n 2 1 (3.1)

D
(p)

5 ­(p) 1
(1 2 q)F21

F
u
(p)

F21 ­
(p)

, p 5 0, 1, 2, . . . , n 2 1

which satisfy

Q
(p)

F 5 D
(p)

F 5 ­
(p)

, p 5 0, 1, 2, . . . , n 2 1 (3.2)

Q
(p)

D
(p)

5 qD
(p)

Q
(p)

, p 5 0, 1, 2, . . . , n 2 1

and where
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­
(p)

5 ­ z
(p); ­(p) 5 ­ u

(p)

Relations (3.2) can be obtained directly using Eqs. (2.1) and (2.3). The
generators (3.1) can be extended:

L
(p)

n 5 z
(p)12n ­

(p)

2
1
F

(n 2 1) z
(p)

2n1
(p)

, n P Z

G
(p)

L 5 z
(p)1/F2r1­(p) 1

(1 2 q)F21

F
u
(p)

F21 ­
(p)

2 (3.3)

2
(1 2 q)F21

F 1r 2
1
F2 z

(p)1/F2r21 u
(p)

F211
(p)

, r P Z 1
1
F

and lead to n copies of fractional super-Virasoro algebra without central
extension:

[ L
(p)

n , L
(k)

m] 5 (n 2 m) L
(p)

m+ndp,k

[ L
(p)

n , G
(k)

r] 5 1n
F

2 r2G
(p)

n+rdp,k (3.4)

{G
(p)

r1, . . . , G
(p)

rF} 5 L
(p)

r11???1rF

where dp,k is the usual Kronecker symbol, 1
(p)

is given by

1
(p)

5 o
n21

i51

(1 2 q)i

(1 2 qi)
u
(p)

i­(p)
i

and {???} is the multilinear symmetric product defined by Eq. (1.4).

4. FRACTIONAL SUPERFIELD ON FMCn

In the fractional superspace FMCn , a fractional superfield decomposes as

f( z
(0)

, z
(1)

, . . . , z
(n21)

, u
(0)

, u
(1)

, . . . , u
(n21)

)

, o
n21

i050
??? o

n21

in2150
u
(0)

i0 ??? u
(1)

in21ci0/F,...,in21/F( z
(0)

, z
(1)

, . . . , z
(n21)

) (4.1)

we note that for n 5 2, this decomposition reduces to the one on the complex
fractional superspace, (z, z, u, u). We have many kinds of fields:
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ci0/F,...,ip/F50,...,in21/F, p 5 0, 1, 2, . . . , n 2 1

ci0/F,...,ip/F50,...,ip/F50,...,in21/F, p, r 5 0, 1, 2, . . . , n 2 1 (4.2)

c0,...,0,ip/F,0,...,0, p 5 0, 1, 2, . . . , n 2 1

The various components of f have nontrivial ZF-graduation, and are of grade
i0, i1, . . . , in21; they satisfy, because of their grad, the q-mutation relations

(ci0/F,...,in21/F)F 5 0 (4.3)

u
(p)

ci0/F,...,in21/F 5 q2(i01i11???1in21)ci0/F,...,in21/F u
(p)

, p 5 0, 1, 2, . . . , n 2 1

We note that the covariant derivative D
(p)

commutes with the FSUSY

transformation ε
(p)

Q
(p)

:

dD
(p)

f 5 Q
(p)

df

where ε
(p)

is the parameter of the FSUSY transformation; its q-mutations with

ci0/F,...,in21/F are identical to those of u
(p)

with ci0/F,...,in21/F.
The transformations of the superfield are

df 5 ε
(p)

Q
(p)

f

The relation ε
(p)

u
(p)

5 q21 u
(p)

ε
(p)

ensures that D
(p)

is a covariant derivative, as it
should be in order to build the FSUSY invariant action [13]. The algebraic
structure developed here will be useful for constructing the fractional model
on FMCn; this will be analyzed elsewhere.

Finally, note that we have seen that most of the properties of a 2D
fractional supersymmetry theory on C can be extended to the multicomplex
space MCn via an algebraic method on FMCn called “fractional super-
multicomplex space. This could be useful for understanding the consequences
of FSUSY extensions in relation to n-dimensional physics. Notice that this
is the first step to be considered, as we did not discuss the representation
theory of the FSUSY on MCn.
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